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Streaming motions in a bed of vibrationally 
fluidized dry granular material 

By STUART B. SAVAGE 
Department of Civil Engineering and Applied Mechanics, McGill University, Montreal. Canada 

(Received 31 August 1983 and in revised form 21 January 1988) 

Experimental and theoretical studies of vibration-induced flow and mixing of dry 
granular materials are described. Tests were performed on rounded polystyrene 
beads contained in a rectangular box having transparent front and back walls and 
a flexible, nominally horizontal bottom which could be driven a t  various frequencies 
and amplitudes. The amplitude of the bottom vibrations was a maximum a t  the 
centre and decreased towards the vertical sidewalls. Slow recirculating flows were 
observed ; they had the form of two vortices in which the velocity was upwards a t  the 
vertical centreline and downwards along the vertical sidewalls. The streaming 
velocities were measured as a function of bed vibration frequency and displacement 
amplitude. An explanation proposed for the recirculating flows is that the vibrating 
base sends ‘acoustic’ waves upwards through the bed. These waves ‘fluidize’ the 
granular material but are in turn attenuated because of the dissipative nature of the 
collisions between the ‘fluidized’ particles. Thus the slow recirculating flows in the 
granular material are analogous to the more familiar ‘acoustic streaming’ in air. An 
approximate analysis of these streaming motions is developed by making use of a 
modification of the constitutive theory of Jenkins & Savage (1983). A number of 
simplifying assumptions are introduced to make the analysis tractable. The general 
flow patterns of the streaming motions are predicted, but the velocities are 
overestimated as a result of the simplifying assumptions. The analysis is restricted 
to a rather narrow range of conditions. 

1. Introduction 
Often, during the transportation, processing and handling of particulate solids, i t  

can be beneficial to employ external sources of vibrational energy. For example, 
vibrations can be used to segregate different sizes and materials, to  induce closer 
packing of the solids, and to ‘fluidize’ the granular material and thus improve its 
flow characteristics. Input of vibrational energy has also been suggested by a number 
of investigators as a possible means of mixing particulate solids. Kroll (1955) 
observed that slow circulatory motions occurred in a particle bed when the vessel 
containing the granular material was subjected to vertical sinusoidal vibrations. 
Takahashi, Suzuki & Tanaka (1968/9) and Suzuki, Takahashi & Tanaka (1968/9) 
investigated vibration-induced circulatory mixing in hopper-shaped vessels. More 
recently, Ratkai (1976) has measured the recirculating granular flows developed by 
vertical vibrations of a circular plate located in the central portion of the horizontal 
base of a 90 mm diameter cylindrical container. The circular plate induced upward 
spout-like velocities of the order of 1 cm/s above the plate in a 66 mm deep bed of 
1 mm diameter plastic granules. The circulatory motions, which Ratkai termed the 
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‘ vibro-spouted ’ process, were most vigorous for vibration frequencies between 30 
and 60 Hz. 

Motivated more by scientific curiosity than by practical considerations of the 
above kind, Walker (1982) has made some amusing and surprising observations of 
the motions and circulatory patterns in vibrated dehydrated beverage powders 
(Nestea and Tang). Walker’s experimental arrangement was based upon the classical 
demonstrations of Chladni that  were performed in 1787. Chladni observed that sand 
grains sprinkled on a vibrating flat plate tend to  collect along the nodal lines to form 
arrangements that are now known as Chladni patterns. He further observed that 
when the sand was replaced by a finer material such as lycopodium powder, the 
vibrations caused the powder to collect at the antinodes. The usual explanation, 
which has a sound theoretical basis, is that the plate vibrations generate ‘acoustic 
streaming ’ in the air above the plate and these streaming motions in the air transport 
the fine light powder towards the antinodes. 

Walker placed piles of Nestea and Tang powder upon a horizontal metal plate 
vibrated by a loudspeaker which in turn was driven by an audio oscillator. He was 
particularly interested in the circulation patterns developed within the powder itself. 
He found that the particles at the bottom of the pile moved towards the centre of the 
plate, rose upwards to the top of the pile, rolled down the sides and re-entered the 
pile a t  the bottom. The overall circulation pattern was similar to that in the ‘vibro- 
spouted ’ beds described by Ratkai (1976). Similar observations were made much 
earlier by Faraday (1831) in connection with his investigations of Chladni patterns. 
Faraday’s physical explanation for the circulatory motions in the powder pile was as 
follows. Near the peak of the pile’s upward travel, the base of the pile loses contact 
with the plate, air rushes in the gap thus created and carries particles from the 
perimeter of the pile towards the centre. Walker (1982) found this explanation 
unsatisfactory and argued that particles a t  the base of the pile would be dragged in 
the opposite direction, from the centre to  the rim, over the part of the cycle when the 
pile comes down towards the plate. 

One possible approach to this problem would be a theoretical continuum, fluid-like 
description of the vibration-induced flow fields, based upon the solution of an 
appropriate set of governing equations of motion, but as yet this has not been 
attempted. In  fact, not even a convincing physical argument to explain the cause of 
the circdatory flows has been previously suggested. The present paper describes 
experimental and theoretical studies intended to clarify the mechanics of the 
vibration-induced circulatory flows and mixing of dry granular material. This is 
attempted by directing attention to a specific boundary-value problem and choosing 
the flow geometry and boundary conditions so as to  minimize the complexity of the 
theoretical analysis. The main objectives are to  isolate the primary physical 
mechanisms that drive the circulations and to devise a simple analysis which is 
capable of predicting the essential features of the flow field and the order of 
magnitude of the velocities. 

2. Exploratory experiments 
As a preliminary to  the analysis, some simple experiments were carried out under 

the author’s direction by R. Kong and J .  Lee as part of an undergraduate student 
project. The intent was to observe the circulation phenomenon in operation, to gain 
some appreciation of the collisional interactions that individual particles experience 
and the values of solids concentration that occur, and to determine typical 
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FIGURE 1.  Schematic diagram of vibrating bed apparatus. 

magnitudes for the circulation velocities and how they depend upon bottom-wall 
vibration frequency and amplitude. Since the main purpose was to acquire some 
broad physical impressions, the measurements were neither extensive nor very 
detailed. 

2.1. Apparatus and procedure 
A schematic diagram of the experimental apparatus is shown in figure 1. The 
granular material consisted of flattened, but roughly spherical, polystyrene particles 
having a specific gravity of 1.09 and diameters ranging between 0.8 and 2.0 mm. The 
particles were contained in a rectangular box having two vertical aluminium 
sidewalls spaced 180 mm apart, and vertical front and back walls spaced 19 mm 
apart and made of transparent plate glass to permit visual observations of the 
particle motions. The flexible, nominally horizontal sheet-metal bottom was attached 
a t  pinned supports to the vertical aluminium sidewalls and could be driven at various 
frequencies and amplitudes by a mechanical vibrator connected to an amplifier and 
oscillator. The amplitude of the base vibrations was spatially non-uniform, with a 
maximum at the vertical centreline and close to zero a t  the sidewalls. 

By mixing in a small quantity of black particles with the mass of white polystyrene 
beads it was possible to distinguish clearly the streamline patterns. Velocities were 
determined by measuring the lengths of streamlines made on film by these particles 
during time exposures taken by a 35 mm still camera. Figure 2 is a typical (long) time 
exposure showing the two recirculating cells that developed. The particles moved 
upward along the centreline and downward near the sidewalls. For the experimental 
results presented here, the flow patterns were reasonably two-dimensional ; however, 
there were instances in which strong three-dimensional streamline patterns were 
observed. Experiments were performed during the winter months under conditions 
where the humidity was very low. It was found that when the beads were vibrated 
for 5-10 min, a significant electrostatic charge would develop. When this happened, 
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FIGURE 2 .  ‘Long’ time exposure of vibrated granular bed. Streaks made by black beads 
indicate circulatory streaming motions. 

particles were attracted to  each other and to the glass sidewalls, and the recirculating 
motions were retarded. These difficulties were significantly reduced by spraying the 
particles prior to each test with antistatic liquid of the kind used to prevent collection 
of dust on phonograph records. 

Series of tests were performed to investigate the effects of the amplitude and 
frequency of the base vibrations on the strength of the recirculating motions. Rather 
than map out the whole velocity field for each test, a representative velocity V, was 
determined from streamline measurements in the region of a point P located 32 mm 
above the bed level and 24 mm from the vertical centreline as shown in figure 1. In  
a given set of tests a t  a fixed vibration frequency, the velocities a t  the point P were 
measured for series of values of base centreline vibration displacement amplitudes a. 
The data for various frequencies were cross-plotted in terms of velocity versus 
frequency for various values of a,  as shown in figure 3. 

One of the referees of an earlier version of the present paper drew attention to  
Gutman’s (1976) work which studied the fluidization of powder by vibration of its 
rigid cylindrical container. Temporal variations of the interstitial fluid pressure 
occurred and fluidization was attributed to the net upward force generated because 
the pressure variations were not in phase with the particle motion. Such interstitial 
fluid effects were not thought to be operative in the present tests since the particles 
used here were more than an order of magnitude larger than those used by Gutman. 
Furthermore, an air gap existed between the sidewalls and the vibrating bottom in 
the present tests, but no leakage could occur through the walls of Gutman’s rigid 
container. 

Nevertheless, as a matter of interest, a second set of tests was performed to 
compare circulation velocities generated when the solid vibrating plate was replaced 
by one that was perforated with circular holes of 0.794mm (k in . )  spaced 
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FIGURE 3. Experimrntally determined magnitude of streaming velocity at point P as a function 
of bed vibration frequency and displacement amplitude. 

approximately 3 mm between centres. The idea was to permit ready leakage of air 
through the bottom plate and prevent the development of significant interstitial 
fluid pressure variations. Some differences between the test results obtained with the 
solid vibrating bottom and the perforated one were observed, but i t  is most likely 
that these differences were due to the differences in effective wall roughness caused 
by the perforations rather than by interstitial fluid effects. In summary it was found 
that 

( i )  A t  lower displacement amplitudes a of 2.5-3 mm the solid plate generated 
about 30 YO higher circulation velocities than the perforated plate in the frequency 
range of 1545 Hz. 

(ii) For a between 3.5 and 4.5 mm the velocities were similar in magnitude except 
at frequencies greater than 30 Hz where the circulation velocities were lower for the 
perforated plate than for the solid plate. 

(ii) For a = 5 mm, again the velocities wcre similar except for frequencies greater 
than 25 Hz where the perforated plate generated higher circulation velocities. 

Two or three observations were taken for each set of test conditions to obtain the 
streaming-velocity data points. To give some idea of the reproducibility of results we 
note that an average of the differences between successive tests for the same 
conditions was 11.4Y0, but differences of up to  35% were observed. 

2.2. Results and a physical interpretation 
Each of the curves for constant a presented in figure 3 shows the same trend; the 
mean flow velocity at the point P increases with base vibration frequency f ,  reaches 
a maximum, and then decreases with further increase in f .  With increase in 
amplitude a ,  the circulatory velocities initially increase and the peak in velocity at 
a constant value of a shifts to lower frequencies. When the base vibration amplitude 
a reaches a certain value, the circulatory velocities peak and further increases in 
amplitude reduce the circulation velocities. The general trends in these two- 
dimensional flow experiments are much the same as those observed by Ratkai (1976) 
in his axisymmetric apparatus. The two apparatuses were of roughly the same 
overall dimension and, as might be expected, the magnitudes of the circulation 
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velocities, and the ranges of operative bed frequencies and amplitudes were 
similar. 

A physical explanation of the above results is now presented prior to the detailed 
analysis of the circulatory flow field. While this physical proposal may be accepted 
as natural and perhaps obvious by the reader, the task of identifying i t  as a likely 
flow mechanism was for the present writer assiduous. In  fact, it  was preceded by 
numerous attempts to pose the appropriate boundary-value problem by isolating 
essential mechanisms and specifying boundary conditions, all of which initially 
seemed plausible and reasonable, but which were found to bc entirely unsatisfartory 
when the predictions of the circulatory velocities were compared with the 
experimental values. In  most of these attempts, the correct senses of the recirculating 
motions were not even predicted. 

The present notion is that  the granular material is in a state similar to that 
dcscribed by the kinetic theories of granular flows (Savage 1983a, 1984) in which the 
individual particles are in continuous agitation as a result of collisions with near 
neighbours. Because of the particles’ inelasticity and friction the collisions are 
dissipative and energy must flow from the bulk motion in order to maintain the 
particles’ collisional velocity fluctuations. In  some previous granular flow inves- 
tigations, the bulk motion consisted of steady shear flows (see, for example, Shen 
& Ackermann 1982; Campbell & Brennen 1983, 1985; Haff 1983; Jenkins & Savage 
1983; Savage 1983a; Lun et al. 1984; Jenkins & Richman 1985). 

Here we consider the granular material as a compressible ‘fluid’ in the continuum 
context and regard the propagation of waves (analogous to  acoustic waves) through 
it as the primary flow which maintains the particle velocity fluctuations or what is 
termed the ‘granular temperature ’. Thus the vibrating base sends waves upwards 
through the granular material. Because of the energy dissipation, the wave is 
attenuated as i t  propagates upward. The wave attenuation gives rise to a mean force 
on a ‘fluid’ element which results from the differences bctween the values of the 
Reynold’s stresses acting on opposite sides of the element (Lighthill 1978, 54.7). L 3‘ ince 
the displacement amplitude of the bed vibrations is spatially non-uniform (largest a t  
the centreline and smallest near the sidewalls), the amplitude of the wavcs 
originating a t  the bed is also spatially non-uniform. Hence the wave attenuation and 
thus the mean force field are non-uniform. The mean force field is strongest near the 
centreline ; this generates two slow recirculating vortices in which material moves 
upwards along the vertical centreline and downwards along the sidewalls. Therefore, 
i t  is proposed that the circulatory motions are simply another example of ‘acoustic 
streaming’, but, in the present instance, streaming that occurs in a granular 
medium. 

One would expect that as the displacement amplitude and frequency of the bed 
vibrations are increased from low values, the strength of the recirculating motions 
would increase. Such behaviour is evident in figure 3. In the interior of the mass of 
granular material a significant contribution to the pressure is due to collisions 
between particles, much like the pressure in a gas at the molecular level. Thc granular 
material thus behaves as a compressible fluid and particles can maintain collisional 
contact with the vibrating bed over the complete cyck of its travel as long as the 
accelerations and velocities of the vibrating bed are not too large. If the bed 
vibrations have too high a frequency or amplitude, so as to exceed some critical bed 
acceleration or velocity, the bed will lose collisional contact with the granular 
material over part of the cycle. During the motion upward from its lowermost 
position the vibrating bottom slams into the granular material and chattering 
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results. Thus, as the bed accelerations are increased above a critical value, the bcd 
vibrations are less effective in inducing pressure waves through the material and the 
slow streaming recirculation velocities are reduced. This explains the maxima in the 
data shown in figure 3. 

3. Governing equations 
3.1. Continuum equations fo r  granular flow 

Jenkins & Savage (1983) (see also Savage 1983a, b, 1984, for experimental verification 
and further discussion of the theory) have developed a theory for the flow of idealized 
granular materials consisting of smooth but inelastic, identical spherical particles 
undergoing binary collisions. Although more detailed and complete analyses have 
recently been performed, for example by Lun et al. (1984) and Jenkins & Richman 
(1985), the simpler analysis of Jenkins & Savage will suffice for the present 
purposes. They supposed that, as a result of either some imposed mean shear flow or 
some input of vibrational energy as in the present case, particles continually collide 
with each other and dissipate energy as a consequence of the particles' inelasticity. 
Associated with these collisional translational velocity fluctuations we can define a 
translational granular temperature T, which is related to  the fluctuation specific 

(1) 
kinetic energy as follows: ZT = $( C2), 

where C = c - u ,  c is the instantaneous velocity of an individual particle and u = ( c )  
is the bulk velocity. The conservation equations for mass, momentum and 
fluctuation-specific kinetic energy have the familiar forms 

dP - = - p v . u ,  
dt 

where p = mn = uppp is the bulk mass density, m and pp are respectively the mass and 
mass density of individual particles, n is the number density of particles, v is the 
solids fraction (volume of solids per unit volume), p is the pressure tensor composed 
of a kinetic part p k  = p(CC) and a collisional part p c ,  q is the flux of fluctuation 
energy composed of a kinetic part qk = &(CC2) and a collisional part qc, yc is the 
collisional rate of dissipation per unit volume, q is the gravitational acceleration and 
t is time. For moderately large concentrations i t  is permissible to neglect the kinetic 
contributions in comparison with the collisional ones, and hence we assume p k  << p ,  
and qk < qc. The constitutive equations for stress, energy flux and dissipation rates 
were found to be 

( 5 )  

(6) q = qc = -KVT, 
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where K = 2v2( 1 + e )  g,pp u(’l’/n)f, (8) 

D = + u ~ , ~ ) ,  (9) 

u is the particle diameter, e is the coefficient of restitution, go(v)  is the radial 
distribution function a t  contact and a is the numerical coefficient which we can take 
to be unity (Savage 1 9 8 3 ~ ) .  

Following Savage & Jeffrey (1981), Jenkins & Savage (1983) used the radial 
distribution function g o ( v )  that  was proposed by Carnahan & Starling (1969) on the 
basis of their numerical simulation carried out during ‘equilibrium’ (no shear) : 

1 3v V 2  - - ( 2 - 4  
go(’) = i ~ + 2 ( ( 1 - ~ ) 2 + 2 ( 1 - ~ ~ ) 3  2 (1 -43’  

A recent comparison in Lun et al. (1984) of the Jenkins & Savage (1983) theory with 
shear-cell experiments of Savage & Sayed (1984) suggests that the predictions for 
stresses are too low a t  high v, but that most of the general trends of this theory are 
correct. It is proposed here that we replace the above expression for go(v) by the 
simple one that is implicit in the work of Bagnold (1954) and was given later by 
Ogawa, Umemura & Oshima (1980) : 

g,(v) = [l -(v/v&1. (10) 

For a regular packing of equal spheres the maximum solids fraction v M  = n/(32/2) = 
0.7405, for a random packing v M  x 0.64, but an appropriate value for v M  when go is 
used in the kinetic flow theory may be somewhat less than 0.64. If we take v M  to  be 
0.7405, the numerical values given by (10) are close to those given by the expression 
of Carnahan & Starling ; but, if we take v M  = 0.64 and use (10) for go(v)  in the Jenkins 
& Savage (1983) theory, then the predictions for the stresses are closer to the 
experimental results for what are probably realistic values of the coefficient of 
restitution. Hence, in the subsequent analysis we shall use (10) with v M  = 0.64. 

The theory of Jenkins & Savage (1983) described above was developed for 
moderate concentrations, high enough that the kinetic contributions can be 
neglected, but low enough that the assumption of binary collisions is still valid. At 
higher concentrations the assumption of binary collisions breaks down. Collisions 
cannot be regarded as instantaneous, and ternary and highcr-order collisions as well 
as enduring contacts between particles will occur. As a result of dry Coulomb friction 
and particle overriding during enduring contacts, rate-independent stresses arc 
developed in addition to the collisional rate-dependent stresses. 

It is far from clear how to devise a rational theory which includes these rate- 
independent effects, but Savage (1983b) has suggested a simple ad hoc approach to 
account for them in a crude way. The total stress tensor was assumed to be composed 
of the sum of a quasi-static or rate-independent part p, and a collisional momentum 
flux part p, given by (5), thus 

P = P, + P C .  

The kinetic contribution arising from translation of particles across shear planes 
was again neglected. The rate-independent part p, was assumed to be of the form 

where t r  (DD) = DimDmi,psO is the mean ‘quasi-static’ normal stress, and is the 
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quasi-static friction angle which in general might be a function of concentration v 
and the granular temperature T .  The total stress p must satisfy the linear 
momentum equation (3). It was assumed t,hat the granular temperature was 
governed by the collisional-fluctuation-energy equation 

3 dT 
s p x =  -pc :Wu-W~qq , -yc .  

I n  addition to  the collisional dissipation yc,  which appears in (13), we note that in 
general there is an additional dissipation term ys associated with the stress work 
ps : Wu, the evolution of the ordinary temperature and heat conduction. 

Furthermore, in the present paper i t  is assumed that, because of the presence of 
the vibrations, the quasi-static friction angle p tends to vanish. With the above 
assumptions the stress tensor (11)  after taking 01 = 1,  simplifies to 

p =ps+pc = 

The above constitutive equations are admittedly oversimplified and ad hoc in 
certain respects, but a t  the present time we have little else to use. 

3.2. ‘Sound’ speed 
In  the analysis developed in $4 we require the speed of propagation of infinitesimal 
waves through the granular medium consisting of particles that are excited and 
continuously colliding. To get a rough estimate of this ‘sound’ speed we follow the 
analysis given in Chapman & Cowling (1960, pp. 396-398) dealing with damping of 
sound waves in a gas. We note that Haff (1983) has given a brief and somewhat 
different discussion of the sound speed in a granular medium. 

Neglecting the dissipation yc and the flux of fluctuation energy g,, the energy 

(15) 

equation (13) reduces to 

If we neglect terms analogous to the usual viscosities then the collisional stress 

dT s p x  3 = -pp,:vu. 

tensor is 
P, = Po4  

Using the mass-conservation equation (2) and (18) in (15) yields the ‘sound 
speed ’ 

The ratio co/Ti versus v is shown in figure 4. Curves are shown for different values 
of e although we realize that it is somewhat inconsistent to do so since we have 
neglected terms like the dissipation y, in the determination of (19). 

Since signals propagate as a result of particle collisions, we might expect that a t  
very low concentrations, c,  z (C2)i = (3T)i. At higher concentrations, we can 
roughly estimate c,  as follows. Define s as the mean free separation distance between 
particles, so that (S+LT) is the mean distance between centres. We may express s in 
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FIQURE 4. Variation of c,/Ti with solids fraction v :  -, equation (19) ; ---, equation (21) 

terms of the concentration v and the maximum possible concentration for a regular 
dense packing v M  (Bagnold 1954). Thus the linear concentration is 

For a signal to propagate a distance ( a + s ) ,  a particle moving a t  the r.m.s. 
fluctuation velocity (C2)i  need only traverse a distance s. A rough estimate of c,, is 
thus 

c,, = (?)(C2)$ = ( h + 1 ) ( 3 T ) i  

Equation (21) is also shown on figure 4 ;  it  yields values for c,, somewhat lower than 
those given by (19) for the range of v of interest here. 

3.3. Continuum mean $ow and jluctuation equations 
The mean flow and fluctuation equations are now obtained from the conservation 
equations for mass, momentum and fluctuation-specific kinetic energy (2), (3) and 
(4). It is important to realize that in this section the averaging is carried out over a 
coarser scale than that used to derive (2)-(4). The flow velocity fluctuations dealt 
with in this section should not be confused with particle velocity fluctuations C. We 
follow the method of mass-weighted averaging which is commonly used in studies of 
compressible flow turbulence (Cebeci & Smith 1974). Note that whereas in turbulent 
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shear flow problems the fluctuations are often rather smaller than the mean flow 
properties, in the present problem the mean flow velocities corresponding to the 
streaming flow will be considered small compared with the velocity fluctuations 
associated with the wave motions generated by the vibrating base. 

Write the velocity components and density in terms of mean and fluctuating 
parts : 

u. a = .ii.+u! a a 1  (22) 

p = p+p”, (23 ) 

where di = pui/p (24) 

is a mass-weighted mean velocity component and the overbar denotes the usual 
mean. 

Writing the expression for pui in terms of the definitions (22)-(24) we find 
- 
pu;  = 0. (25 ) 

T = F+T‘,  (26) 

where P = p T / p  (27) 

Similarly, we write the ‘granular temperature ’ in terms of mean and fluctuating 
parts 

is the mass-weighted mean granular temperature and 

pT’=0 .  

The conservation equations (2)-(4) may then be expressed as 

(29) 

(30) 

a a 
-(p+p”)+-(p.iij+pu;) = 0, 
at axj 

a a ap.. 
- (psi + pu ; )  + - [pd, Ci + pC, u; + pu ;  Cj + pu ;  u’] = pgi - 3, at axi axi 

Taking the means of these equations yields 

a a ap.. a I 
- (pi&) + - (pCi a,) = pgi - a-- (pu,  u;), 
at axi axj axj (33) 

where the stress has been separated into a mean and fluctuating part : 

P*j = Pij + ~ 3 % .  (35) 

3.4. A rough order-of-magnitude estimate of the streaming velocities based upon  the 
proposed streaming mechanism 

Prior to performing the detailed analysis of $ 4  we shall present some rough 
computations to estimate the order of magnitude of the streaming velocities. This 
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section can be regarded as a more detailed and quantitative elaboration of $2.2 which 
presented a physical description of the proposed mechanism responsible for the 
streaming motions. The purpose is to obtain some quantitative predictions of the 
streaming velocities in a simple and direct way for the reader who may not wish to 
read in detail the analysis of §4. 

We consider the circulatory motion associated with the gyre in the right-hand half 
of the vibrating granular material (see figure 1). The mass of fluidized particles, when 
sheared, will exhibit an effective shear viscosity which we assume can be determined 
from the Jenkins-Savage theory. From (14) this viscosity is seen to be 3 ~ 1 5 ,  where 
K is given by (8).  I n  the steady state, the resulting magnitudes of the streaming 
velocities in the gyre are such that the rate of ‘viscous ’ dissipation is just balanced 
by the rate at which work is done by the distributed force resulting from the 
attenuation of the waves propagating upwards from the bed. This condition can be 
used as a very simple way to  estimate the magnitude of the circulation velocities. 

For sinusoidal waves the Reynolds stress a t  the bed is $7~: where vb(x) is the 
magnitude of vertical velocity of the vibrating bottom. Note that the velocity v,,(x) 
varies with position since the displacement amplitude of the vibrating bottom varies, 
having a maximum value a a t  the centreline and decreasing towards the vertical 
sidewalls. Assuming that there is a 50% attenuation in Reynolds stresses over the 
complete depth, the (depth-averaged) distributed force per unit volume due to these 
Reynolds stress is ( l / h )  (ipv;). 

Particles move in a clockwise direction in the right-hand gyre, i.e. upward along 
the vertical centreline and downward along the right-hand sidewall, with an 
approximate speed that we shall call v,. The particles also move towards the right 
along the top surface and to the left along the bottom with an approximate speed of 
u,. From the conservation of mass within the recirculating gyre we see that 
roughly u, h = v, b. 

Positive work is done by the distributed (upward) force over the half of the gyre 
where the particles have an upward streaming velocity component. Assume that 
over the portion of the vibrating bottom directly below this region the average value 
of v i  is $2w2,  where w is the radian frequency of the bottom vibrations. Multiplying 
the resulting distributed force per unit volume by the average upward streaming 
velocity over the associated half of the gyre (assumed to be &,) and by the area itself 
(ibh) yields the rate at which work is done by the distributed force (per unit thickness 
of the granular bed) 

We neglect the (negative) contribution from the half of the gyre where the 
streaming velocities have a downward component. These downward velocities are 
largest in the region next to  the right-hand sidewall, but there the Reynolds stresses 
are smallest because the bottom displacements are small. Thus, the work contribution 
from this half of the gyre is only a fraction of the work done in the region where the 
streaming velocities have an upward component. 

Using the value of 3 ~ / 5  from the Jenkins-Savage theory for the effective viscosity 
we can write the ‘viscous’ dissipation rate per unit volume for the assumed 

incompressible material as EK(DijDtj). 

We approximate the value of Dtj in the gyre as i[;(2u,/h+2ve/b)] = 
fve( 1 + b2/h2) /h  (assuming linear variations of velocity from the centre of the gyre and 
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using u, = v,(b/h)). Now multiply the dissipation rate per unit volume by the area of 
thc gyre bh to obtain the dissipation rate per unit thickness of the granular bed as 

Now by using (8) for K and setting the rate a t  which work is done by the 
distributed force equal to the rate of dissipation we can obtain an expression for the 
streaming velocity component v, : 

5a2w2b2( 7t/T)g 
1444 1 + e )  go (Th( 1 + b2/h2)*  ' 

0, = 

The most difficult thing to estimate without the benefit of detailed microscopic 
energy considerations is the granular temperature T over the main part of the bed. 
From (1)  we see that T is defined to be a third of the mean square of the particle 
velocity fluctuations. If the particles exactly followed the motion of the sinusoidal 
bed vibrations then the maximum value of Ti at the centreline (left-hand edge of the 
gyre) would equal ( a w ) / z / 6 .  The displacement amplitude of the particle fluctuations 
in the main part of the bed was observed to be quite a bit smaller than the centreline 
amplitude of the bed vibrations, so this probably considerably overestimates the 
granular temperature over the major part of the bed. If, on the other hand, particles 
bounce back and forth across the mean separation distance between particles s with 
a frequency f = w / 2 ~ ,  then Ti = ( sw/n ) / z /6 ,  a considerably smaller value. As a very 
rough guess for the choice of an appropriate value of T ,  we reduce the first estimate 
to Tt = (aw) /6  to account for fluctuations of an amplitude smaller than a over the 
main part of the gyre. (We note that the more detailed energy considerations of $4.1 
give a result that can be expressed very roughly for the present experiments as 
Ti = ( a s ) h . )  

Let us now substitute for the variables in the above equation for v, numerical 
values corresponding to the experiments described in $2.  Thus take h = 62 mm, b = 

90 mm, the average particle diameter as (T = i (0 .8t2 .0)  = 1.4 mm, assume that the 
average solids fraction v = 0.58, and determine go from (10). These are the same 
values that will be used later in predictions based upon the more detailed theory of 
95. If we choose, for example, a = 3 mm and a bed vibration frequency f = 30 Hz we 
find that the streaming velocity v, = 61 mm/s. Using T = asw2 gives a streaming 
velocity v, = 81 mm/s. These values are of the same order as that predicted by the 
more detailed analysis of $4  (see figure 6).  All are considerably larger than the 
experimental values because of the neglect of friction on the sidewalls of the 
container (particularly the walls of area bh) and the neglect of the quasi-static 
contribution to the shear stresses in the interior of the material as discussed in $ 5 .  

4. Analysis 
Solution of (29)-(34) and the associated constitutive equations for p,., qi and yc for 

the present problem is formidable and may be possible only through the use of 
numerical methods. The purpose of the present paper is merely to explore the 
mechanics that govern the development of the vibration-induced circulating flow 
patterns. Accordingly we shall choose a particular geometry and make linearizations 
and other assumptions to permit a simple approximate solution which can be 
expressed in analytical form. 

Consider two-dimensional motions in the x, y (xl, x,)-plane. Assume that the mean 
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depth of granular material h is small compared with the half-width b of the 
rectangular container (figure 1) and that the amplitude of the base vibration is a 
maximum in the centre of the container at x = 0, and that its variation with x is not 
large ; hence a/ax 4 a/ay. It is assumed that the steady mass-weighted mean velocity 
is small compared with the velocity fluctuations associated with the wave motions, 
but that the other fluctuating quantities such as density, granular temperature and 
stress are small compared with the respective mean values, i.e. 

ci 4 u;, (36) 

but p" 4 p ,  
T +5?, etc. 

With these assumptions the mean linear momentum equation ( 3 3 )  is approximated 

a __ 
0 = pg i - - - - (pu;  u ! ) .  3 axj axj 

and the momentum equation (30) by 

a a ap . -(pu;)f-mu;u;] = pgs---2. 
at axj axj 

(39) 

4.1. The primary wave motions 

Subtracting (39) from (40) and assuming that @/ax,) &(u; u; - u; ui)] is small 
compared with the other terms, and that p x pa = const, yields the linearized 

__ 

momentum equation au; ap; 
Po,, = -q' 

The dominant terms of the y-equation of (41) are 

For simplicity we assume that K is constant ; in general this would be quite a crude 
approximation, but for the present case it may not be too extreme since near the 
vibrating base where the granular temperature is high, v2go(v) is probably low 
whereas nearer the free surface the opposite is likely to  be true (see ( 8 ) ) .  Substituting 
( 4 3 )  in (42) yields 

where (45) 

and e, is the 'sound speed' defined by (19). 
In a similar way, from the conservation-of-mass equations (29) and (32) we 

obtain 
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Eliminatingp” from (44) and (46) yields the damped wave equation for 21’ (Lighthill 
1978, pp. 76-80) 

a Z t l /  a w  gK a3v’ 
--=c;--+-- 
a t 2  ay* 5p0 at a y 2 ’  

(47) 

For small attenuation (47) has solutions of the form 

where (49) 

vb(x) is the vertical velocity at the base and is a slowly varying function of x, and w 
and k are the radian frequency and wavenumber of the longitudinal waves travelling 
upward through the granular material. 

To first order for small damping, the density fluctuation 

For a steady streaming flow, the dominant terms in the energy equation (34) after 
making use of (14) are found to be 

or 

Using the expression (48) for v’ in (51) we can solve for the mean granular 
temperature in the case of small attenuation : 

= A ~ , ~  e*hY+A e-zav, (52) 

where /3 = 6( 1 - e)/u2, (53) 

A = &u: k2/(/3-4S2). (54) 

If we assume that the energy input occurs only a t  the bed and that (damped) 
waves travel in the positive y-direction, then A, = 0. 

4.2. Streaming motions 
Assuming that p x po, the mean flow continuity equation (32 )  becomes 

aci 
ax, - _  - 0, 

and the mean stress tensor (14) is approximately 

(55) 

where, as noted previously, we have assumed that K x const. 
The two-dimensional streaming flow patterns will be considered in a layer of 

granular material of small depth-to-width ratio ; thus we define a small parameter 

(57) E = h / b  < 1.  
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For simplicity we assume that the velocity of the base vibrations has the following 
explicit variation with x: 

where N = O(1).  
v&) = vo[ l+€Ncos(n~)] ,  (58) 

Define dimensionless variables 

and put 

where ,u = O(1). 
Then the non-dimcnsional components of the stress tensor are 

The dominant Reynolds stress pu,’ uj’ is 
__ 

pui uk z po v’v’ = po e-28u. 

With the above definitions, the mean continuity for steady streaming motions and 
the mean linear momentum equations in the x- and y-directions are respectively 

au a v  
ax ay -+- = 0, 

ax2 
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etc., and substituting in (63), (64) and (65) we obtain the sequence of equations: 

Zeroth-order 

First -order 

(72) 
a --([P, + T$]“’ + M N  cos ( n X )  e - 2 y  = 0 

ay 

etc. 
Solution of the above equations is sufficient to reveal the main features of the 

streaming flow. Integrating (69) and (70)  and taking the normal stress to be zero at  
the free surface Y = I yields 

[p, + 53~(0) = 1 - y + L&[e-zah - e-2ShY1. (73) 

Integrating (72)  and again applying the condition that the normal stress is zero a t  

(74) 

the free surface yields 

[P, + T$](l)  = - M N  cos (EX) [e-26hY - e-z”]. 

By substituting (74) in (71)  and integrating once we find 

At the upper free ‘surface’ one can observe a cloud of saltating particles or a 
‘boundary layer’ in which the bulk density gradually varies from its value in the 
interior of the bed to zero. Thus, although the shear stress is zero along the upper 
‘surface’, the bulk density, K and p also are zero there and the application of the 
stress-free condition for the determination of G , ( X )  is awkward. Instead we apply an 
approximate condition at the base Y = 0 where properties are better defined. It is 
assumed that the base is smooth, particles slip, and that the shear stress and thus 
3U(O)/dY are zero there. Thus we find 

G , ( X )  = ltMN __ sin ( n ~ ) .  
2Sh 

Integrating (75) again yields 

Since the streaming flows have the form of recirculating gyres, we can determine 
G 2 ( X )  by using the condition that 

I: U(O) dY = 0. 
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Hence we find that 
1 G,(X) = xMN sin (7cX) e-26h +- [e--26h - 1 { 8S3h3 

(79) 

Integrating the continuity equation (68) using (77) and (79) yields the zeroth-order 
vertical velocity component 

1 1 e-26hY 

cos(7cX) - +Y,+--- 2x2MN 
J n O )  = ____ 

P { 2 k [  4Ph2 4~3~h2  

6 

1 
+-(e-26h-I) 1 Y3 e-26h + y I e-2Sh 1 _ _  

[6 4Sh 8S3h3 

5. Comparison of predicted streaming flow velocities with measurements 
It is interesting to compare the predicted zeroth-order streaming velocities with 

the experimental data shown in figure 3. Most of the values for material properties 
and granular- bed dimensions required for the calculations were determined in the 
experiments, but some other quantities must be estimated. Furthermore, to simplify 
the calculations we shall make use of overall average values for K ,  pol p, 6, etc. 

Equation (52)  gives the mean granular temperature distribution. If we assumed, 
for example, that to first order all the normal stresses a t  the base arise from 
collisional interactions, then from (73) applied a t  Y = 0 we obtain 

Ti x 1. 

Hence from (8) and (59), at Y = 0 we find 

Equating (82) to (52)  applied a t  y = 0 provides a means to determine the constant 
A ,  and hence the resulting granular temperature distribution as a function of 
distance above the base. For typical plastic and glass particles e z 0.8-0.95 (Lun & 
Savage 1986). Thus ,&$ is of the order of a particle diameter u and it will be found 
that J2 < p. The e-folding distance for the first term on the right-hand side of (52) is 
of the order of one particle diameter. Hence the temperature distribution 5? over 
almost the entire depth is dominated by the second term A exp (-26y) which decays 
slowly with y since S is very small. Thus one finds a thin layer near the vibrating bed 
where the granular temperature is highest a t  the very bottom and drops off very 
rapidly with height. In  the main part of the interior the granular temperature F is 
lower and nearly constant, and v is somewhat larger than in the thin high-granular- 
temperature bed layer. We shall assume an overall average value of v = 0.58, 
e = 0.85 and estimate an overall average granular temperature to be used in the 
determination of the average values for K ,  po, p, 6,  etc. The average particle diameter 
is chosen as CT = +(0.8+2.0) = 1.4 mm. We also take eN = 0.5. This will closely 
approximate the base vibration amplitude over most of the bed, but it gives values 
that are too high near the sidewalls ( X  = 1) and will probably cause the predictions 
to overestimate the streaming velocities. 

Since the high-temperature layer next to  the vibrating plate is very thin and 6 is 
very small, a good approximation to the overall average temperature is seen from 
( 5 2 )  to be P x A .  
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FIGURE 5. Horizontal and vertical components of streaming velocities on vertical and horizontal 
lines respectively through the centre of the right-hand gyre (for a = 3 mm,f = 25 Hz, e = 0.85 and 
average h = 62 mm). 

Taking 62 < /5’ in (54), and using (19), (8), (49) and (60) i t  is possible to calculate the 
overall average temperature and co, K ,  6 and p corresponding to this overall average 
granular temperature. We can then determine the streaming velocity components 
from (77) and (78). 

Figure 5 shows the predicted u- and v-velocity components along vertical and 
horizontal lines respectively passing through the centre of the right-hand gyre. The 
velocities were calculated for base vibration centreline amplitude a = vo( 1 + & ) / w  = 
3 mm, a frequency of 25 Hz, a coefficient of restitution e = 0.85 and an average depth 
of material h = 62 mm. The flow pattern is similar to that observed but the predicted 
magnitude of the velocities is about an order of magnitude too large. 

Figure 6 shows the magnitude of the predicted velocity V, a t  the point P (z = 
24 mm, y = 32 mm) versus base vibration frequency f for constant values of bed 
centreline vibration amplitude a. The streaming velocities increase with increasing a 
and depend linearly upon vibration frequency. 

The predicted velocities are considerably higher than the experimental measure- 
ments shown in figure 3. This is to be expected since we have made several 
simplifying assumptions in the analysis which result in overestimates of the 
streaming velocities. The friction along the front, back and sidewalls and base has 
been neglected ; and the static contribution to the shear stress has been neglected in 
the interior of the granular material (recall p, was assumed zero in (12)). In the 
experimental set-up the amplitude of the base vibration decreased to approximately 
zero a t  the sidewalls (X = 1). Thus near these walls the granular material would not 
be fluidized to the same extent as material closer to the centreline, the internal 
friction and ‘ viscosity ’ would be high and the circulation velocities reduced as a 
result . 

It may also be noted that the predicted velocity versus frequency curves of figure 6 
have a different shape than the experimental curves of figure 3. At high frequencies 
and high base vibration amplitudes a new phenomenon enters. It has been neglected 
in the analysis and it is difficult to see how it might be incorporated. If the velocity 

I0  FLII 19.4 
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FIGURE 6. Predicted magnitude of streaming velocity at point P as a function of bed vibration 
frequency and amplitude for e = 0.85. Results above the dashed line, which corresponds to 
D,, = (Cz$, would be affected by loss of contact of the granular bed with the vibrating bottom. 

of the base vibrations is too high, the base will lose collisional contact with the 
particles over a portion of each cycle. This kind of ‘ chattering ’ was observed in the 
experiments at high frequencies and amplitudes. 

We can roughly estimate the frequency at which the base begins to lose collisional 
contact by putting the mean base velocity vo equal to  the r.m.s. of the individual 
particle velocity fluctuations, i.e. 

hence we find 185) 

A line corresponding to (84) is plotted on figure 6 ;  the region above this line will 
be affected by loss of base contact with the particles. As a result of this ‘chattering ’, 
the vibrating bottom is less effective in generating waves that fluidize the granular 
material. The streaming velocities would be less than those shown in figure 6, and 
would tend to zero for large bottom vibration amplitude and frequency rather than 
increasing monotonically as predicted. 

6. Concluding remarks 
The slow streaming motions developed in a bed of dry granular material fluidized 

by a vibrating bottom have been studied both experimentally and theoretically. 
Heretofore, no convincing explanation for these flows has been given. The present 
paper has proposed that they are analogous to the phenomenon of ‘acoustic 
streaming’, and a simple analysis of the streaming motion was given. The acoustic 
streaming referred to here results from dissipation in the interior of the granular 
material and is not the boundary-layer type of streaming responsible for the 
collection of lycopodium powder on vibrating plates. The approximate theory yields 
the general qualitative features of the flow patterns, but it overestimates the 
magnitude of the streaming velocities. This was anticipated because of the numerous 
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simplifying assumptions that were necessary to enable a simple closed-form solution. 
However, the main purpose of the analysis was to  identify and corroborate the 
mechanisms responsible for the streaming motions and this appears to have been 
accomplished. 

While under certain conditions the non-uniform base vibrations are effective in 
mixing the granular materials, the functioning of this mechanism is limited to rather 
small depths of material, of the order of 10 cm for typical plastic or glass particles of 
millimeter size. It may be worthwhile to investigate mixing in a bed using the 
combination of usual gas or liquid fluidization with the vibrational fluidization 
described in the present paper. 

Grateful acknowledgement is made to the Natural Sciences and Engineering 
Research Council of Canada for support of this work. 
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